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Abstract. We present a detailed numerical study of the dynamics of high-energy kink 
excitations in monatomic chains, with a simple description using a microscopic model of 
the narrow kink core. We present velocity-amplitude and energy-momentum curves for 
the kink which fit well the numerical results. Kink-kink collisions are slightly inelastic 
depending on the velocities and point of collision within a lattice spacing. 

1. Introduction 

Non-linear wave propagation in one-dimensional anharmonic lattices has been exten- 
sively studied for simple interatomic potentials of polynomial form (Fermi et al 1965, 
Zabusky 1973, Pnevmatikos 1983, 1985, Flytzanis et al 1985, 1987, Pnevmatikos et a1 
1986) which can approximate any realistic potential near the equilibrium separation 
distance of two atoms. This description, done usually in the continuum limit, is 
sufficient for small relative displacements from equilibrium. For non-linear waves with 
large relative displacements the interatomic potentials in real crystals can be better 
fitted by Morse, Lennard-Jones and other empirical potentials. The propagation of 
non-linear waves in more realistic potentials has mainly been studied numerically 
(Rolfe et al 1979, Ali and Somorjai 1979, Valkering and de Lange 1980). Some 
approximate analytic solutions have been obtained in the continuum approximation, 
valid for wide non-linear excitations for the cubic and quartic interaction potentials 
(Pnevmatikos 1985, Flytzanis et al 1985, 1987), for the (2 , l )  Lennard-Jones potential 
(Yoshida and Sakuma 1979) or the more general (2n, n )  Lennard-Jones potential for 
n = 2,3,4 (Ishimori 1982). Significant improvement is obtained when using the 
quasicontinuum approximation (Collins 1981, Rosenau 1986). Exact analytic solutions, 
which are valid even for very narrow discrete excitations, can be obtained only for the 
Toda lattice, which is a discrete completely integrable system (Toda 1975). 

In our previous studies (Peyrard et a1 1986) we have shown that narrow soliton-like 
excitations can propagate in discrete monatomic chains without any energy loss due 
to discreteness effects. So, it is interesting to study highly discrete (i.e. very narrow) 
localised excitations in a lattice and investigate the possibility of soliton-like waves or 
even exact solitons in lattices with interaction potentials other than the Toda potential. 
At the same time we can check the limits for the validity of the existing continuum or 
quasicontinuum theories. 
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In addition to the mathematical aspect of this problem, the study of narrow 
excitations is very important for specific physical applications such as, for instance, 
detonation waves in solids. A detonation wave is a highly supersonic wave sustained 
by the energy released in an exothermic chemical reaction, and the lattice compression 
can be as large as half the lattice spacing, while the detonation front can be extremely 
narrow. Recent studies have dealt both with the microscopic mechanism of the initiation 
of detonations and the propagation of the detonation in a molecular model using 
techniques from molecular dynamics (Hardy and Karo 1978, Peyrard et a1 1985, Tsai 
and Trevino 1984). Several studies of shock waves in solids (Tasi 1980, MacDonald 
and Tsai 1978, Batteh and Powell 1978) under impact conditions have shown the 
importance of coherent non-linear excitations in the structure of the narrow shock 
front. These coherent excitations are the cause of the non-attainment of thermal 
equilibrium in a large domain behind the shock (MacDonald and Tsai 1978, Batteh 
and Powell 1978) which can persist even at non-zero lattice temperatures (Batteh and 
Powell 1978, Straub and Holian 1979). A detailed analysis of shock propagation in a 
one-dimensional Toda lattice has shown that the leading edge of the shock wave is 
well represented quantitatively by a single isolated soliton while following it is a slowly 
varying soliton wavetrain whose structure depends on the driving velocity of the piston 
causing the shock (Holian et al 1981). 

The aim of this paper is to show that the narrow soliton-like excitations exhibited 
in our previous work (Peyrard et a1 1986) exist in a large variety of non-linear lattices. 
We describe their dynamical behaviour and their characterisation via the appropriate 
amplitude-velocity relation and an investigation of the conserved quantities, such as 
energy, momentum, etc. In § 2 we present some analytical results valid mainly in the 
continuum approximation and describe briefly the effect of the lattice for discrete 
solitons. In 0 3 we characterise the high-energy (narrow) excitations by introducing a 
simple model with a few particles near the soliton core and a fitting procedure using 
the analytical expressions for the Toda soliton with independent parameters for the 
amplitude, velocity and width. We also define the soliton momentum (distinguished 
from the chain momentum) as the congugated canonical variable to the soliton position 
and present its relation to the soliton energy. In § 4 we discuss the numerical results 
and in the final section we present a summary and our conclusions. 

2. Continuum and lattice solitons 

2.1. Interaction potentials 

We consider a one-dimensional monatomic lattice with mass my lattice spacing D and 
only nearest-neighbour interactions (NNI). The restriction to NNI is for simplicity and 
the results are easily extended to second and higher neighbours. The Hamiltonian of 
the system can be written in the general form 

= c [ i d  + U Y "  - Y n - 1 ) 1  (2.1) 
n 

where yn is the atomic displacement from equilibrium, and the bond strain is 

~ " = Y n - Y n - l .  (2.2) 

The potential V ( r )  can be quite general, but in this paper we limit ourselves to the 
following forms. 
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(i) Cubic-quartic: 

V ( r )  =&GrZ+fAr3+$Br4 

with particular cases B = 0 or A = 0. 
(ii) Morse: 

(2.3) 

V ( r )  = P(e-”‘-I)’ (2.4) 

or a modification of it used by Collins (1981) with an extra parameter that changes 
qualitatively the attractive part of the interaction potential. 

(iii) 12-6 Lennard-Jones: 

V ( r )  = E [ (x) D + r  ’’ - 2 (  x)6+ D + r  
11. 

(iv) Toda potential: 

V ( r )  = a e-br/b + ar - a / b  

(2.5) 

which is used as a reference point for our results. 
In all the above cases the parameters in the interaction potential can be determined 

by fitting to first principles calculations. In our case we examined a large range of 
numerical values for these parameters. The potentials are defined so that V ( 0 )  = 0. 

The equation of motion for y ,  can be written as 

or 

m d’r, -- - V’( r ,+ l )  - 2 V’( r , )  + V’( r , - l )  
dt’ 

for the strain r,, where V ’ ( r )  = dV/dr. Except for the Toda lattice, which is exactly 
solvable, one must consider approximate solutions of (2.7) in the long-wavelength 
limit. These solutions can be used as initial conditions in numerical simulations for 
the study of narrow kinks. 

2.2. Approximate continuum solutions for the lattice solitons 

In the usual continuum approximation, with x = nD a continuum variable, we expand 
the finite-difference operator in the RHS of (2.7) or (2.8) as 

a’ v a4 v 
ax ax4 

V‘(r ,+ l ) -2V’(r , )+  V‘(r , - l )=  D 2 7 + & D 4 -  (2.9) 

where V ’ =  V ’ ( r ( x ) )  and we neglect higher derivatives. If one keeps only the linear 
term for r in the second term of the RHS of (2.9), then for the potential (2.3) one 
obtains the generalised Boussinesq ( G B ~ )  equation from (2.7) for u = yx : 

U , ,  - C ~ U ,  - p (  u ’ ) ~ ~  - ( U ’ ) X X  - huxXxx = 0 (2.10) 

with 

c i =  G D ’ / m  p = A D 3 / m  

h = G D 4 / ( 1 2 m )  q = BD4/m.  
(2.11) 
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The analytical solutions for (2.10) are given in the appendix, and here we summarise 
the results. For NNI only, h > 0 so that we always have supersonic excitations with 
velocity v > co. For B (or q )  < 0 there are no excitations, except when with second- 
neighbour interactions we have h < 0 and then there are no kink excitations for B > 0. 
For B>O with A Z O  there are both compressive and rarefactive kinks, but in the 
continuum approximation only the kink that has the same sign as A (or p )  is stable. 
This point will be examined later for more general potentials. For B > 0 and A = 0 
both compressive and rarefactive kinks are stab!e. Since the empirical pair potentials 
have A<O when expanded near the equilibrium position the kinks are compressive 
and feel the repulsive part of the potential. 

Even in the continuum approximation no analytic solution exists for the Morse 
potential. For the (2-1) Lennard-Jones lattice with NNI an analytic expression has 
been obtained (Yoshida and Sakuma 1979) without expanding the non-linear potential 
in powers of r, except that in the dispersive term only the linear part of the potential 
is considered. 

In the quasicontinuum approximation (Collins 1981, Rosenau 1986) one inverts 
the finite-diff erence operator instead of expanding it and obtains an integro-diff erential 
equation. If one looks for a solution of the form y ( x  - v t )  the same result as the GBq 

equation in (2.10) is obtained, but with a different dispersion parameter h, = hv2 /c i  
which depends now on the velocity. If v is near co, of course, then h reduces consistently 
to the continuum approximation value where the width also goes to infinity. Again, 
no analytic solutions exist for the Morse or Lennard-Jones potentials. Even in this 
improved approximation of the quasicontinuum the known analytic solutions break 
down when the width of the excitations is comparable to the lattice spacing. 

2.3. Efect of discreteness 

The dynamical effects of the discrete lattice for narrow excitations has been studied 
for dislocations (Flytzanis et al 1977, Flytzanis 1978, Earne and Weiner 1974) and 
topological solitons of the sine-Gordon type (Peyrard and Kruskal 1984). In this case 
the excitation will ‘feel’ the lattice and lose energy by radiation of small amplitude 
waves. 

In the case of non-topological solitons we have shown (Peyrard et al 1986) that 
for a monatomic chain there is energy loss for subsonic excitation but not for supersonic 
excitation. Due to coherence of the motion the emission occurs at specific frequencies, 
such that the phase velocity of the emitted radiation is equal to the soliton velocity 
and we have constructive interference, i.e. 

w ( k ) / k = v  (2.12) 

where w ( k )  is the linear dispersion relation. Condition (2.12) is never satisfied for 
supersonic solitons at finite k. From this we expect that narrow soliton-like excitations 
will propagate undamped as was already checked for simple cases. Here we generalise 
these results for general interaction potentials and determine the properties of these 
excitations. The above condition for emission has been verified for subsonic solitons 
or for solitons in diatomic chains (Peyrard et a1 1986). The emission arguments break 
down for wide solitons since the amplitude of the emitted waves is modulated by a 
function that drops exponentially with large widths, so that the continuum approxima- 
tion results are valid. 
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3. Properties of highly discrete lattice solitons: numerical results 

3.1. The numerical method 

Since no exact analytic solutions exist we have developed a procedure to obtain them 
numerically using the non-linear chain as a ‘soliton generator’ with some appropriate 
initial conditions. The starting excitation is obtained from the continuum approxima- 
tion (see appendix) extending the parameter for the width to values of the order of 
the lattice spacing. Some improvement is obtained by using the result of the quasi- 
continuum approximation, but in both cases the velocity of the emerging excitation 
for a given amplitude is very different after propagation. 

The coherent excitation separates from the transient after propagation on the chain, 
since the kink is supersonic while the oscillations move at the speed of sound. The 
separated kink emits no radiation in agreement with our prediction. When the kink 
is clearly separated from the transient, the part of the chain containing the transient 
is removed and we study the properties of the ‘pure’ kink. The emerging excitation is 
called a ‘lattice soliton’ to distinguish it from solitons derived from the continuum or 
quasicontinuum approximations. The fact that the chain is able to create such a solitary 
excitation from rather different initial conditions is an indication of the stability of 
these excitations, and therefore they should play a role in physical situations where 
shocks are involved. 

The iiumerical scheme for solving the non-linear differential-diff erence equations 
of motion is a fourth-order Runge-Kutta method on a lattice with 500 atoms and fixed 
boundary conditions as described earlier (Pnevmatikos 1985, Peyrard et a1 1986). 

3.2. Analysis of the soliton projle 

A detailed numerical study of the ‘lattice soliton’ propagation shows oscillations in 
kinetic and potential energy with a period of one lattice spacing, while the total energy, 
of course, is constant. These oscillations are large and exist also in the Toda lattice 
due to the finite number of particles (in some cases two or three) in the soliton core. 
The question arises whether part of these oscillations can be due to shape fluctuations 
or velocity oscillations. This is the case with topological solitons (Ishimori and 
Munakata 1982) that feel the Peierls barrier of the static substrate which is absent in 
our model. 

The study of the motion within a lattice spacing requires a careful determination 
of the soliton position. A simple linear interpolation between core atoms is not 
sufficient, and velocity fluctuations caused by the roughness of the position determina- 
tion are observed. Other polynomial fittings do even worse. The method we have 
chosen is to fit the numerical values for yn(  t )  by a modified function of a Toda soliton 
in which the amplitude A ,  and width w can vary independently: 

+constant 
1 + exp[ *2( x - xo - $)/ w ] 
1 + exp[ * 2 ( x  - xo + $)/ w ]  

y F ( x )  = $A: In (3.1) 

where xo is the soliton position. The * sign is introduced to also allow for the fitting 
of rarefactive solitons that do not exist for the Toda lattice. The parameter A,  can 
be considered to be known, since A, = y ( c o ) - y ( - a ) .  The fitting with (3.1) is very 
good, as can be seen in figure 1 and the parameters xo and w are evaluated. During 
propagation within a unit cell the width and velocity of the excitation remain constant 
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Figure 1. Fitting with a Toda type function from (3.1) for the atomic displacement for two 
configurations A and B, shown in ( a )  and ( b ) ,  where the kink is centred on a particle or 
between two particles respectively. The corresponding velocities are fitted in ( c )  and ( d ) .  

to within a relative error of for the Toda lattice). Thus, it is meaningful to 
write yn( t )  =f( n - ut) where f ( x )  is a well defined smooth function and u the soliton 
velocity. For narrow excitations it is difficult to define the width, but the choice of 
(3.1) makes 2w a natural candidate for the full width. 

3.3. Amplitude-uelocity relation 

Numerical simulations have shown that the amplitude of the lattice soliton which 
emerges from a continuum (or quasicontinuum) initial condition is very different from 
the initial amplitude for very narrow solitons. We have undertaken a study of the 
soliton amplitude-velocity relation in two cases: (i) power law interatomic potentials 
for which there are analytic expressions in the continuum approximation to compare 
with, and (ii) more physical potentials (Morse, Lennard-Jones etc) to investigate the 
effect of the potential shape. 

In figure 2 we plot the kink amplitude ( A ,  < 0) as a function of velocity for a cubic 
potential with G = 1, A = -10.5, and B = 0 in (2.3). The points are the experimental 
results fitted by a discrete method (DM) valid at large amplitudes (the continuous 
curve) to be described in Q 4. The kinks are compressive in the whole range of velocities, 
in full agreement with previous results (Pnevmatikos 1983, Flytzanis et a1 1985). The 
continuum approximation (CA) result is given by 

A,  = 6 [ h ( u ” ~ ~ ) ] ” ~ / A  CA ( 3 . 2 ~ )  

with h and co given by (2.11), and is qualitatively different from our results. The 
quasicontinuum approximation (QCA) for which 

A ,  = 6 u [ h ( v 2 -  c ~ ) ] ” ~ / ( c ~ A )  QCA (3.26) 
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Figure 2. Amplitude-velocity plot for a cubic potential (G = 1, A = -10.5, B = 0). Numeri- 
cal points (circles); continuum approximation (broken curve); quasicontinuum approxima- 
tion (chain curve); discrete description (full curve). 

7.0 
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is better, but does not fit correctly the experimental points at large amplitudes. In 
figure 3 the amplitude-velocity relation is presented for a quartic potential with G = 1, 
B = 1 and A = 0. The CA and QCA results are respectively 

A, = 4 ( 2 h / B ) ' l 2  CA (3 .3a )  

and 

(3 .3b)  

so that in ( 3 . 3 ~ )  A ,  is independent of v while in (3 .3b)  we have the wrong slope. On 
the contrary, the discrete method gives a perfect fit. Due to the symmetric potential 
we have both compressive and rarefactive solitons. The compressive excitations have 
a meaning when A ,  is less than a lattice spacing. For realistic values of B it is generally 
possible, since the amplitude at v = co is inversely proportional to the square root of 
B (see appendix ). 

In figure 4 we present the amplitude-velocity relation for a cubic-quartic potential 
with G = 1 ,  A = -10.5 and B = 62 chosen so that the potential is a good fit to a Morse 
potential near equilibrium for a particular material (Ag). In figure 4 ( a )  for compressive 
kinks, the CA result is not good, while the QCA and DM fit respectively the small and 
high amplitude regions. At small amplitudes the behaviour corresponds to a cubic 
potential while at high amplitudes to a quartic. In figure 4( b )  we present the rarefactive 
kink results which are perfectly fitted by ,the DM description. Both the CA and QCA 

are bad fits in this case. For v near co the continuum solution is unstable since the 
width is of the order of the lattice spacing, which is inconsistent with the CA. The 
continuum solution is not a good starting point for the simulations and near v = co the 
CA amplitude is multiplied by a factor so that the elastic energ' is considerably 
increased. The CA result for A, is 

A,  = 4 ( 2 h / g )  ''2 tan-'( 1 /  w )  CA (3.4) 

with w given in ( A 2 ) ,  which at v = co reduces to 27r(2h/q) ' /*  and is independent of 
A. The limit A -* 0 does not reproduce the quartic potential result (3.3) for which we 
must take the limits A + 0 and v .j co in the correct order. In either case the numerical 
results are different. For higher velocities the rarefactive excitations are easily attainable 
numerically. 

In order to investigate the effect of the form of the potential we started with the 
Morse potential for Ag, which has a mass m = 107.87m0 where ma is taken as the mass 
unit, and lattice spacing D = 3.225 8, taken to be the unit of length. The parameters 
in the Morse potential are CY = 1.369 A-' and p = 0.3323 eV. If we use as the energy 
unit Eo = 1 eV, the time unit is defined as to = ( moD2/Eo)  while the speed of sound 
co = 3276 ms-' is very reasonable. In table 1 we give the parameters chosen for the 
other potentials as well as their force constants when expanded in a Taylor series such 
that the expansion coefficients G, A and B are approximately equal (see figure 5 ) .  

In figure 6 we plot the kink amplitude versus velocity for all four potentials. The 
curves match for velocities near the speed of sound, as expected, due to the choice of 
matching of the bottom of the potential wells. For higher velocities the curves diverge 
from each other and follow in order of increasing steepness of the potentials for the 
range of amplitudes studied. 
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Figure 4. Amplitude-velocity plots of (a)  rarefactive and (b)  compressive solitons for a 
cubic-quartic potential ( G  = 1 ,  A = -10.5, B = 62). See caption in figure 2. 

Table 1. 

Potential parameters Power law expansion 

Cubic-quartic G, = 1 A, = -10.5 B, = 62 
Morse (a = 7 ,  P=O.Ol) G, = 1 A, = -10.5 B, = 57 
L-J ( E  = 0.013 89) G, = 1 A, = -10.5 B, = 62 
Toda ( a b = l , b = 2 1 )  G, = 1 A, = -10.5 B,  = 73.5 
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Figure 5. Interatomic potentials for the parameters given in table 1: harmonic (full curve); 
cubic-quartic (broken curve); Morse (chain curve); Lennard-Jones (double-dot chain 
curve). 
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Figure 6. Comparison of amplitude-velocity numerical curves for the cubic-quartic (cQ), 
Morse (M),  Lennard-Jones (LJ) and Toda (T) potentials with parameters given in table 1. 

3.4. Energy-momentum relation 

The total energy and momentum of the atomic chain are conserved and given by 

(3.5) 
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where p,, is the momentum of the nth particle and N is the number of particles. The 
chain momentum P, is the momentum canonical to the centre of mass of the chain 
coordinate which is at rest for an infinite chain. Since we consider excitations travelling 
at a constant velocity o we can define the soliton position coordinate x o ( t ) ,  and its 
corresponding conjugate momentum P, given by (Mertens and Buttner 1982) 

dP,(E)/dE = *l/v(E) (3.7) 

where E is the total energy of the soliton. Equivalently, for a single soliton, P, can 
be defined as the action variable 

N T 

p s =  c f m9n dyn = 2 I, m j i ( t )  d t  (3.8) 
n = l  i = l  

where the integral should be taken over the phase space trajectory of the nth particle, 
when the soliton moves one lattice spacing, i.e. T = D/ o. Explicit calculation for the 
Toda lattice has verified the consistency of (3.7) and (3.8) and it is P,, not P,, which 
gives the correct description for the statistical mechanics of the system (Mertens and 
Buttner 1982) in the picture of an ideal gas of solitons. Expression (3.8) is essentially 
the average of the total kinetic energy over the period T = D/u. For a single soliton 
this should be equivalent to the kinetic energy of a single atom integrated over all times: 

P, = m lom yi( t )  dt. (3.9) 

In the continuum limit the corresponding quantities can be easily calculated since 
analytic expressions are known (cubic, quartic potential etc) for the soliton form. If 
we define the basic units of length A,, time A, and energy A, as 

A, = ( h /  c:) 'I2 A, = (h/c;)'/' A, = 6'mA,cE/( pD) (3.10) 

for the cubic potential, we have for a single soliton (Flytzanis et al  1987) 

E,,, = A,($k3+$kfi2+skS) (3.11) 

P,= M,u = M,Cofi/ k (3.12) 

P, = A,($fikZ)/co (3.13) 

where M ,  is the soliton mass 

M s = - 1 2 k M o = - 1 2 k m c , ~ / D p  (3.14) 

and 

R2 = k2 -4k4 (3.15) 

where k and fi/ k are the dimensionless inverse width and velocity, respectively, of 
the soliton (Flytzanis et a1 1987). Using (3.11) and (3.12) for E,,, and P, respectively, 
relation (3.7) is easily verified, as is also the case for the quartic and the discrete Toda 
lattice (Mertens and Buttner 1982). 

It is very important in the energy in (3.11) to include all the terms up to some order 
in k (i.e. ks) and not just take one of the conserved quantities for the Boussinesq 
equation (Flytzanis et a1 1987) which includes the main part of the energy. 
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In figure 7 we plot the energy E,,, against the soliton momentum P, for a cubic 
potential (G = 1, A = -10.5, B = 0). E,,, and P, are measured numerically. At low 
energies (or velocities) the points are well fitted by the continuum approximation result 
from (3.11) and (3.13), where E,,, and P, are given parametrically. At higher energies, 
as expected, the deviation is quite large and the quasicontinuum approximation does 
not change the curve since both E,,, and P, are multiplied by the same factor v / c o .  

In figure 8 we plot E,,, against P, for the Morse potential given in table 1 and the 
points are fitted by two curves to be discussed in P 4. 

3.5. Lattice soliton collisions 

In the previous sections we demonstrated that stable narrow lattice solitons exist for 
most interatomic potentials. Here we will investigate in more detail their soliton 
behaviour by studying numerically their collision properties. In general the collision 
is inelastic, as shown in figure 9 for a kink-kink collision, but the degree of inelasticity 
varies strongly and can even be zero as will be discussed below. 

In figure 10 for a quartic potential (G = 1, A = 0, E = 6 2 )  we plot the percentage 
of energy loss after a soliton scattering between a rarefactive and compressive excitation 
of opposite velocities ( U  = 2 . 8 ~ ~ )  as a function of the position of collision inside a 
lattice spacing. We see that for the extremely narrow kinks the collision is almost 
elastic if it happens between two particles, while the inelasticity takes its maximum 
when the collision happens on a particle. In the limit of very narrow excitations the 
elastic kink collisions correspond to two-particle collisions and the inelastic ones to 
three-particle collisions (Valkering and de Lange 1980). The form of the plot changes 
for different velocities. 

The maximum percentage of energy loss in a kink-antikink collision (collision on 
a particle) is shown in figure 11 against the kink velocity. As v is near co the collision 

x m 

W c Y 

0.6 

0.3 

0 0.2 0.4 

Momentum 

Figure 7. Total energy-momentum relation for a cubic potential (G = 1, A = -10.5, B = 0): 
numerical points (circles); continuum approximation (full curve). 
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Figure 8. Total energy-momentum plot for the Morse potential of table I. Numerical 
points are compared with the result of (4.5) for E,,, and (4.8) for p .  using the fitting 
procedure in 9 4.2 for w = 0.456 31. 

Figure 9. Particle velocities in a soliton-antisoliton collision (U, = -u2 = 1.855) in a chain 
with quartic interactions ( B  = 62) for the maximum inelasticity case. 

is elastic. As U increases the energy loss rises rapidly reaching a maximum of 7.8% 
at about U = 1.4c0, after which it levels off at about 6.5%. The curve seems to be rather 
independent of the value of B in the quartic potential since in figure 11 the points 
obtained for B = 1 or B = 62 sit on the same curve. The results of kink collisions are 
in agreement and complement the conclusions of Valkering and de Lange (1980) 
where a hard-sphere description was used. 
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Figure 10. Percentage of energy loss for a kink-antikink collision against the position 
within a lattice spacing where the collision occurs. 
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Figure 11. Percentage of energy loss after a kink-antikink collision for the maximum loss 
position (of the previous plot) versus the soliton velocity. The interaction potential is 
quartic G = 1, E = 62 (circles) and E = 1 (crosses). 
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4. Discussion and analysis 

4.1. Phenomenological description of the amplitude-velocity curve 

In the absence of an analytic solution for the high-energy kinks we present a microscopic 
picture of the soliton dynamics by studying the motion of a few atoms near the core. 
During the uniform motion the displacement pattern changes periodically with a period 
equal to 7 = D / v .  The motion interchanges between the configuration in figure l ( a )  
where one atom is at the centre and figure 1 ( b )  where two atoms are involved. Applying 
energy conservation for the two configurations we can obtain an amplitude-velocity 
relation for the kink. We have 

E,, = my:/2+2V(Am/2) 

Eb = 2( m j i , 3 / 2 )  + V(A,) +AV 

( 4 . 1 ~ )  

(4.lb) 

where j 2  is the velocity of the central atom in figure l ( a )  and yz,3 is the velocity of 
atoms 2 or 3 in figure 1( b). In A V we can include the elastic energy for bonds (1 -2 )  
and (3-4), but for simplicity we consider the case where this is small, and we approxi- 
mate the stretching of bonds (1-2) and (2-3) in figure l ( a )  by A,/2 and (2-3) in 
figure l (b)  by A,. For a particular choice of potential this is possible approximately. 
Since we found in P 2 that the excitation can be described by a uniform function 
f( n - ut) we can determine j z  if we know the slope of the continuum function written 
as A,/L, i.e. 

j z  = -vA,/ L (4.2) 

where L is a constant and is of the order of the soliton width. From momentum 
conservation we have 

9 2 . 3  = Y2/2* 

Using (4.2) and (4.3) in (4.1) since E, = Eb we obtain 
(4.3) 

v 2  = (4L2/AZ,)[ V(A,) - 2 V( A,/2) + A VI (4.4) 
for the amplitude-velocity relation, valid at high amplitude. In general, L is a function 
of velocity but varies very little, so that it is taken as constant. Equation (4.4) is fitted 
to the numerical results in figures 2-4. The parameter L is chosen by fixing the curve 
(4.4) on the highest velocity point. The value of L can also be checked by determining 
the function in (3.1) that fits the displacement y , ( t )  and obtain A,/L from the slope 
at the centre. In all cases the value of L is very close to that obtained from fitting of 
(4.4) for the high-velocity region where A V  is negligible. The fitting is quite reasonable 
and even excellent for the quartic potential where the soliton amplitudes are large 
even at velocities near co. At small amplitudes (U = co) the continuum approximation 
is more appropriate. If AV is not negligible then we can use the more accurate 
procedure presented in the next section. The drawback of this simple method is that 
we cannot obtain a fitting for the soliton energy-momentum relation since the evaluation 
of P, involves a time integration from j ,  over the period T, 

4.2. Improved description of the energy-momentum curve 

Since we need j , ( t )  in (3.8) at all times, we perform a fitting for y , ( t )  with (3.1) and 
determine the parameters w and v, while the amplitude A, is obtained directly. For 
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the energy in (4.1) we can include as many terms as necessary since there exists an 
analytic expression. 

For the configurations in figures l (a )  and (b)  we have 

= m$:/2 + 2(m$:,3/2) + v(r1,2) (4.5a) 

Eb = (m$2,3/2)+ V(R2,3) +2V(R1,2) (4.5b) 

where ri,j and Ri,j are the strains between the ith andjth atoms in the two configurations. 
In (4.5) for E, we added the kinetic energy of the atoms 1 and 3, while in Eb we added 
the potential due to the strain which corresponds to AV in (4.1). If the kink is 
not very narrow these extra terms could be important. Using (4.1) we can evaluate 
the particle velocities and strains in (4.5) at times t = 0 and T. Equating E, to Eb we 
obtain a relation between A, and U, i.e. 

with 

Q2(.)=( 2 sinh z )2+4(---)2-(-) e' e3' sinh z 
l+coshz  l+e '  l+e3 '  coshz (4.7) 

where for simplicity we defined z = 1/ w. In (4.6) there is no adjustable parameter 
since everything is determined from (3.1) once w is evaluated. Equation (4.7) is a 
slight improvement over (4.4), but the price we pay is the fitting procedure necessary 
to evaluate w. 

Using (3.1) for yn(t)  and (3.8) we can evaluate the soliton momentum P, as 

P, = - sinh( 1/ w )  
sinh( 1/ w )  

where the dependence of P, on the parameters A, and v is very simple. This means 
that we can also determine w by evaluation of P, from numerical integration of the 
equations of motion, and use (4.8) since A, and v are easily determined from the 
simulation. Equation (4.8) reduces to the Toda expression if for A, and v we use the 
relation for the Toda soliton. Using (4.5) and (4.8) we can fit the kink energy- 
momentum curves and the agreement is very reasonable by comparing the solid line 
with the numerical points in figure 8 for the Morse potential with parameters given in 
table 1. It should be remarked that the curve is not very sensitive to w. If, however, 
one chooses a slightly different w then the points still fall on the experimental curve 
but are displaced from the corresponding numerical points. The w obtained from the 
fitting also gives a point-by-point agreement. 

5. Conclusions 

In this paper we studied the properties of non-linear excitations in lattice dynamics 
whose width is comparable to the lattice spacing. As shown earlier, their propagation 
is possible in monatomic one-dimensional chains (Peyrard et a1 1986) with no emission 
of lattice waves. We have shown here that these excitations are not perfect solitons 
since their collisions are quasi-elastic and the degree of inelasticity can vary consider- 
ably and can even be negligible. Their analytical description is much beyond the limits 
of validity of the continuum approximation or even the improved quasicontinuum 
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approximation. For this reason we used numerical methods to study the dynamics of 
these excitations for various interatomic potentials including Morse and Lennard-Jones 
as well as polynomial type potentials. We discussed their important characteristics 
with a siniple microscopic model which involved only a few atoms in the highly-strained 
region of the kink. The numerical results obtained for the amplitude-velocity and 
energy-momentum relations are well described by the simple discrete approach, at 
high velocities when the kinks are very narrow. On the other hand, the continuum 
approximation seems to be valid only for v = co and even in that case one must be 
careful for consistency of the solution (see 0 3.3). 

In agreement with earlier work (Rolfe et a1 1979, Ali and Somorjai 1979) there are 
soliton-like excitations in monatomic chains with nearest-neighbour interactions for 
any interatomic potential as long as its repulsive part is more anharmonic than 
quadratic. We also add that there are large amplitude rarefactive solitons if the attractive 
part of the potential grows faster than quadratic in the vicinity of the equilibrium point 
(see figure 4 b ) .  This occurs for the exothermic type potentials used to model crystals 
for the propagation of detonations (Hardy and Karo 1978, Peyrard et al 1985). In 
fact, this is the case in Ali and Somorjai (1979) for a modified Morse potential where 
rarefactive solitons were observed numerically while they are unstable in the standard 
Morse potential (Rolfe et a1 1979) as verified also in our simulations. So there is a 
simple explanation for the earlier disagreement. The range of velocities for which 
rarefactive solitons exist depends on the particular potential and of course could be zero. 

In a chain with second-neighbour interactions which are additive to the nearest- 
neighbour interactions the conclusions are still valid. For strongly competitive interac- 
tions the solitons are subsonic and rarefactive for a simple Morse type potential 
(Pnevmatikos 1983, Flytzanis et a1 1987). For velocities far from the speed of sound, 
however, there are discretisation effects due to the emission of lattice waves and only 
wide excitations are stable (Peyrard et a1 1986). The effect of longer range forces has 
been studied analytically in the continuum approximation (Ishimori 1982, Remoissenet 
and Flytzanis 1985). In both cases the range of the interaction distance influences 
drastically the dispersive part of the equation of motion corresponding to (2.10). 

Collisions between the narrow solitary excitations have small inelasticity and 
therefore the non-linear excitations have a long lifetime. This should be reflected in 
thermal conductivity numerical experiments. An extreme case is that of the discrete 
Toda lattice, which is a completely integrable system and shows infinite conductivity. 
The lack of thermalisation of energy is not seen in diatomic chains (Mokross and 
Buttner 1983) in accordance with our results where only the low-energy solitons are 
stable (Peyrard et a1 1986) and high-energy solitons slow down by emitting lattice 
waves of optical frequencies (Peyrard et al 1986). This mechanism could contribute 
in part to the stochastic behaviour of the system, since there are other parameters that 
are important as the energy per particle of the chain, which in turn depends on the 
boundary conditions due to the constant temperature reservoirs at the chain ends. 
Also, collisions between kinks in a diatomic chain could be much more inelastic than 
that shown for a monatomic chain in figure 11,  depending on their velocities. 

The investigation of solitary wave excitation, propagation and decay is very impor- 
tant in understanding energy transfer and vibrational relaxation in coupled oscillator 
systems, both in one-dimensional chains and finite molecules. In this case, of course, 
one should also consider the high-energy periodic non-linear waves, which turn out 
to become unstable due to the onset of a chaotic behaviour when the oscillating 
solutions have energy densities which exceed a critical value, when the bond stretch 
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reaches the inflection point of the long-range part of the past interatomic potential 
(Collins and Rice 1982). The same can happen for the large amplitude oscillations 
during the collision of'kinks. 

Finally, the high-energy solitons are especially relevant for physical cases where 
large displacements are involved, such as shock waves and detonation waves. Even 
at non-zero temperatures computer simulations show the lack of thermalisation in the 
wake of the shock, while in the case of two or three dimensions a damping mechanism 
for the non-linear coherent excitations is provided, due to the coupling of transverse 
and longitudinal motions (Powell and Batteh 1980). The extent, however, of the 
thermalisation depends on the geometry of the two-dimensional lattice. 
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Appendix 

From (2.10) the solution for the atomic displacement y(x, t )  is: 

y(x, t )  = *2 sgn(h)(2h/q)'/'tan-'{(l/w) tanh[(x - vt)/L]} 

with 

[4p2 + 18( U' - c;) q] * 2p .=( [4p2 + 18( U' - ~;)q]'" 7 2p 
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